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A classification of sandpile models into universality classes is presented. On the basis of extensive numerical
simulations, in which we measure an extended set of exponents, the Manna two-state model [S. S. Manna, J.
Phys. A. 24, L363 (1991)] is found to belong to a universality class of random neighbor models which is
distinct from the universality class of the original model of Bak, Tang, and Wiesenfeld [P. Bak, C. Tang, and
K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)]. Directed models are found to belong to a universality class
which includes the directed model introduced and solved by Dhar and Ramaswamy [D. Dhar and R. Ra-

maswamy, Phys. Rev. Lett. 63, 1659 (1989)].
PACS number(s): 05.70.Jk, 05.40.+j, 05.70.Ln

The introduction of sandpile models as a paradigm of
self-organized criticality by Bak, Tang, and Wiesenfeld
(BTW) [1] stimulated numerous theoretical [2,3] and nu-
merical studies [4—7]. In these models, which are defined on
a lattice, grains are deposited randomly until the height at
some site exceeds a threshold, and becomes unstable.
“Sand” is then distributed to the nearest neighbors. As a
result of this relaxation process neighboring sites may be-
come unstable, resulting in a cascade of relaxations called an
avalanche. It was observed that these models are self-driven
into a critical state which is characterized by a set of expo-
nents [1]. These include exponents that describe the distribu-
tion of quantities such as avalanche size and lifetime, and
exponents which relate these properties of the dynamics.
Large scale simulations of the BTW model [4] and some
variants of it [8,9] were performed. The BTW model and the
Manna two-state model were concluded to belong to the
same universality class [8]. Christensen and Olami later in-
troduced an extended set of exponents [7]. They measured
the values of these exponents for the BTW model, and gave
theoretical predictions and heuristic arguments for the values
of some of the exponents. Continuous height models were
also studied [10] and some aspects of universality were ex-
amined [11]. A sandpile model with a preferred direction was
introduced and solved by Dhar and Ramaswamy [3].

In this paper we present simulation results which suggest
a classification of sandpile models into universality classes.
The Manna two-state model is found to belong to a univer-
sality class of random relaxation models which is distinct
from the BTW universality class. We first describe the dif-
ferent models, and define the properties of avalanches, with
the exponents characterizing them. The models are defined
on a d dimensional lattice of linear size L. Each site is as-
signed a dynamic variable E (i) which represents some physi-
cal quantity such as energy, stress, etc. In a critical height
model a configuration {E (i)} is called stable if for all sites
E(i)<E_, where E_ is a threshold value. The evolution be-
tween stable configurations is by the following rules.
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(i) Adding energy. Given an arbitrary stable configuration
{E(j)} we select a site i at random and increase E (i) by some
amount SE. When an unstable configuration is reached rule
(ii) is invoked.

(ii) The relaxation rule. If the dynamical variable at site
i exceeds the threshold E ., relaxation takes place, whereby
energy is distributed in the following way:

E()—E(i)— 2 AE(e),

(M
E(i+e)—E(i+e)+AE(e),

where e are a set of (unit) vectors from the site i to some
neighbors. As a result of the relaxation the dynamic variable
in one or more of the neighbors may exceed the threshold.
The relaxation rule is then applied until a stable configura-
tion is reached. The sequence of relaxations is an avalanche
which propagates through the lattice.

The parameters 6E and E . are irrelevant to the scaling
behavior [2,11]. Thus the only factor determining the expo-
nents is the vector AE, to be termed relaxation vector. For a
square lattice with relaxation to nearest neighbors it is of the
form AE=(Ey,Eg,Eg,Ey), where Ey for example is the
amount transferred to the northern nearest neighbor. The
original BTW model is given by the vector (1,1,1,1). The
relaxation in the directed model of Dhar and Ramaswamy [3]
is specified by any vector with 1’s in two adjacent directions
and 0’s in the two other directions, such as (0,0,1,1). In a
random relaxation model a set of neighbors is randomly cho-
sen for relaxation. Such a model is specified by a set of
relaxation vectors, each vector being assigned a probability
for its application. As an example, a possible realization of a
two-state model makes use of the six relaxation vectors
(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), and
(0,0,1,1), each one applied with a probability of 1/6. In Man-
na’s two-state model [8] the variable is decreased to zero on
relaxation, with sand distributed randomly among the nearest
neighbors. We define a current

JIAE]=, AE(e)e, )
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TABLE 1. y exponents for universality classes in two dimen-
sions. The other y’s can be found from the scaling relations, Eq. (5).
The values of these exponents were observed to be independent of
system size. The typical spread of data for different runs of different
models within the universality class is =0.01 about the mean.

Model
Exponent BTW Two-state Directed
1/z* 0.76 0.67 1.00
Vst 1.62 1.70 1.51
Yar 1.53 1.35 1.51
YVsa 1.06 1.23 1.00
D, 1.26 1.42 1.00

*In nondirected models z is identified with v, , and in directed
models it is identified with y,,.

which is the net flow in a relaxation. We also define
J= AEE JIAEIP(AE), (3)

which is the current averaged over the ensemble of relax-
ation vectors. Models can be classified according to the value
of the current JJAE] and its average, J. A model is called
nondirected if JJAE]=0 (the BTW model, for example).
Random relaxation models such as the Manna two-state
model, which satisfy JJAE]# 0 and J=0, are called nondi-
rected on average. Models with J# 0 are called directed. In
this paper we present evidence that this is a classification
into universality classes.

Avalanches have various properties which can be mea-
sured in a simulation: size, area, lifetime, linear size, and
perimeter. The size (s) of an avalanche is the total number of
relaxation events that occurred in the course of a single ava-
lanche. The area (a) is the number of sites in the lattice
where relaxation occurred. Relaxation of all sites which ex-
ceed the threshold at a given time is considered a single time
step. The lifetime (¢) of an avalanche is the number of such
steps. As for the linear size of an avalanche, there is no
unique choice. A possible choice is the maximal distance
(d) between the origin of the avalanche to sites of the ava-
lanche cluster. Another possibility is the radius of gyration
(r) of the cluster of sites where relaxation occurred. A site
belonging to the cluster of sites visited by an avalanche is
defined to be a perimeter site if it has a nearest neighbor
where no relaxation took place. The perimeter (p) is the
number of perimeter sites. Thus we have a set of variables
{s,a,t,r,d,p} which characterize an avalanche. The ava-
lanche variables have probability functions which are as-
sumed to fall off with a power law defined by
P(x)~x'""x, where x € {s,a,t,r,d,p}. These variables also
scale against each other in the form

y~xx, 4)

for x,y € {s,a,t,r,d,p}. The exact definition of the ’s is in
terms of conditional expectations values: E[y|x]~x"x [6].
The exponents are not independent. Scaling relations are
found in [7]. We just note that
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FIG. 1. Simulation results for the BTW model (circles) and
two-state model (squares). E[r|t] (average radius of gyration for
given avalanche lifetime) vs ¢ is displayed in (a), yielding v,,. In
(b) we show a graph of E[s|a] vs a which yields y,, . Their values
are listed in Table I. Data were binned with bin size increasing
exponentially. System size is 5122, with 107 grains dropped. These
results indicate that the two models belong to different universality
classes.

Yyx= Yoy >
(5)
Yzx= Yzy Vyx -

Avalanches are proven to be compact for BTW type models
[7] but have a fractal boundary. It is reasonable to assume
that the fractal dimension D of the boundary is given by the
scaling of the perimeter (p) against the linear size of the
avalanche. It seems that for models which are nondirected
the radius of gyration is the proper measure of size [11].
Therefore we identify D, with v, . For directed models the
maximum distance from the origin to the perimeter is the
proper measure of size, and Dy is identified with y,,. It is
accepted that the dynamical exponent z of nondirected mod-
els should be identified with y,, [11]. In the case of directed
models we identify the dynamical exponent with v,,.
Having defined the models, we now describe the simula-
tions. We used open boundary conditions and system sizes
up to 5122, with 5 10° grains dropped, in two dimensions;
in three dimensions system sizes were up to 1123, with
20X 10° grains dropped. An algorithm due to Grassberger
and Manna [5] was used. We ascertained the dynamics has
reached the critical state by applying Dhar’s “burning algo-
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FIG. 2. Simulation results showing the universality of models in
the BTW (nondirected) and two-state (nondirected on average) uni-
versality classes. Graph shows E[s|a] vs a for system size 1282.
Unless otherwise stated simulations were performed on a square
lattice. For models in the BTW class we see data collapse on a
curve with v,,=1.06. For the random relaxation models
Vsa=1.23+0.01.

rithm” [2], or by starting with a configuration belonging to
the critical state. Manna’s and our own simulation results for
the BTW model indicate that the distribution exponents are
system size dependent, with a logarithmic convergence to the
infinite system values. The values of the 7y’s, on the other
hand, seem to be almost independent of system size. More-
over, we found that the relations that specify the y’s hold
during avalanches as well, and are not just a scaling property
of completed avalanches. Thus the 7’s provide a robust char-
acterization of the dynamical properties of a sandpile model,
and can be used for a reliable classification of sandpile mod-
els into universality classes.

Previous studies clearly show that directed and nondi-
rected models belong to different universality classes [3,7,8].
On the basis of Manna’s simulation results it was concluded
that the Manna two-state model and the BTW model are in
the same universality class [8]. This conclusion is based on
measurements of a limited set of exponents: 7, 7,, and
v:s - We measured the extended set of exponents introduced
by Christensen and Olami, and the fractal dimension. The
v¥’s we obtained in two dimensions are listed in Table I. Our
results are consistent with known analytical results and simu-
lation data: Dhar and Ramaswamy’s analytical solution of a
directed model [3]; simulation results and scaling arguments
given by Christensen and Olami [7]; simulation results of
Manna [4,8]. A momentum-space analysis of a Langevin
equation indicates that for the BTW model z= (2 +d)/3 [11].
Our results for v,,, which is identified with 1/z, confirm this
scaling relation. This agreement supports our observation
that the y’s are size independent, and indicates that we are in
the right avalanche size regime for the observation of v,,.
On the basis of the difference in the y’s for the BTW and
two-state models we conclude that the two models are not in
the same universality class (Fig. 1).

In order to establish that the classification introduced
above is a classification into universality classes we provide
evidence that some details of the models are irrelevant (Fig.
2). Simulation results of the BTW model on the triangular

(b)

FIG. 3. Typical avalanche structure for the BTW model (a) and
two-state model (b). Gray scale indicates the number of relaxations
which occurred at each site during an avalanche. White represents
zero relaxations, and black represents the maximal number of re-
laxations [10 in (a), 45 in (b)]. System size is 150%. Note the shell
structure in the BTW avalanche (an analytically provable property)
vs the irregular structure of the avalanche in the two-state model.
These qualitative geometrical differences translate into quantitative
differences in exponent value, especially the fractal dimension of
the boundary.

lattice and square lattice were compared [4,11]. No signifi-
cant difference was reported. We define N as the number of
states of the E (i) in stable configurations of discrete models.
When the components of the relaxation vector are all 1’s, N
also equals the number of neighbors. In sandpile models the
question of the lattice dependence or interaction range de-
pendence of the exponents is actually a question of the de-
pendence on N. We observed a crossover effect when in-
creasing N. The scaling obtained for the BTW model on a
square lattice (N =4) is shifted to larger avalanches when N
is increased. Similar crossover was observed in the other
universality classes. Note that the requirement that
JIAE]=0 does not imply isotropy. This is the reason the
universality class was called nondirected, rather than isotro-
pic. As an example, a model with a toppling vector (1,2,1,2)
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fulfills this requirement, and simulations show that it belongs
to the universality class of nondirected models.

Continuous models were simulated as well. There are two
types of realizations of continuous models. In one, the vari-
ables are turned into continuous variables, and when the
amount of sand added is not a multiple of the amount dis-
tributed on relaxation (or is a random variable taking such
values) then the height profile is turned into a continuous
distribution. The other is the Zhang realization, where on
relaxation the dynamic variable is decreased to zero and sand
distributed equally among the nearest neighbors [10]. Both
types seem to be in the same universality class [11]. This is
indicated by our simulations as well.

There are a number of possible realizations of a two-state
model. The neighbors to which sand is distributed can be
chosen as distinct (no neighbor chosen twice) or not. In Man-
na’s two-state model [8] the variable is decreased to zero on
relaxation, with sand distributed randomly among the nearest
neighbors. In this case the relaxation process depends on the
variable value. Continuous variants of the model may also be
defined. We have simulated realizations of such models and
all were in the same universality class (Fig. 2). Simulations
of two-state models were performed with annealed random-
ness only [12].

On the basis of the wave structure of avalanches in the
BTW model [13], it can be shown that avalanches have a
“shell” structure, i.e., the sites which relaxed at least n+1
times form a connected cluster with no holes which is con-
tained in the cluster of sites which relaxed at least n times
[Fig. 3(a)]. Avalanches in random relaxation models do not
share this property, and their structure is more irregular. A
typical avalanche in a two-state model is shown in Fig. 3(b).
These geometrical differences are reflected in the fractal di-
mension of the boundary, which is greater for the two-state
model.

The distinction between the universality classes of nondi-
rected models and models which are nondirected only on
average holds in three dimensions as well (Table II). The
difference is less marked because the exponents are nearing
their mean field values.

Directed models also form a universality class. In addition
to the models studied by Dhar and Ramaswamy, where the
relaxation vector is of the form (1,1,0,0) or (1,1,1,0), we
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TABLE II. Exponents in three dimensions for the BTW model
and a three-state random relaxation model (nondirected on aver-
age). Distribution exponents are given for system size of 96°.

Exponent BTW 3-state
Ty 2.35 243
T, 2.35 2.46
Ve (1/2) 0.60 0.54
Vst 1.78 1.80
Yar 1.78 1.72
Ysa 1.00 1.06

simulated models with the relaxation vectors (1,1,1,2) and
(1,1,2,2). In the latter, multiple relaxations are possible, but it
is not reflected in the scaling behavior. We found the same
exponent values in all these models. The values we obtained
in simulations (Table I) are in agreement with the analytical
solution. Directed models with a random relaxation rule
show crossover.

In summary, using extensive numerical simulations we
identified three universality classes in sandpile models: (a)
nondirected models (BTW model); (b) random relaxation
models which are nondirected only on average (Manna two-
state model); and (c) directed models (Dhar and Ra-
maswamy’s directed model). These universality classes cor-
respond to a classification according to the value of the
current J[AE] and its average. Locally nonconservative
models also show self-organized criticality and may form a
different universality class [9].

Recently, Vespignani ef al. [14] introduced a theoretical
framework for calculating the exponents of sandpile models,
in a manner which immediately reveals their universality.
Within their scheme, which is purely phenomenological, the
Manna two-state model and the BTW model are found to be
in the same universality class. Its failure to distinguish be-
tween the two models indicates that some key ingredient is
missing from their scheme. We suspect that multiple relax-
ation is the missing element. Work is now in progress to
extend the procedure to include some form of multiple relax-
ation.

We thank Z. Olami, P. Bak, E. Domany, G. Grinstein, C.
Jayaprakash, T. Kaplan, and M. Paczuski for helpful discus-
sions.
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FIG. 3. Typical avalanche structure for the BTW model (a) and
two-state model (b). Gray scale indicates the number of relaxations
which occurred at each site during an avalanche. White represents
zero relaxations, and black represents the maximal number of re-
laxations [10 in (a), 45 in (b)]. System size is 150°. Note the shell
structure in the BTW avalanche (an analytically provable property)
vs the irregular structure of the avalanche in the two-state model.
These qualitative geometrical differences translate into quantitative
differences in exponent value, especially the fractal dimension of
the boundary.



